Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nat Mach Intell ; 6(3): 354-367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523679

RESUMEN

Foundation models in deep learning are characterized by a single large-scale model trained on vast amounts of data serving as the foundation for various downstream tasks. Foundation models are generally trained using self-supervised learning and excel in reducing the demand for training samples in downstream applications. This is especially important in medicine, where large labelled datasets are often scarce. Here, we developed a foundation model for cancer imaging biomarker discovery by training a convolutional encoder through self-supervised learning using a comprehensive dataset of 11,467 radiographic lesions. The foundation model was evaluated in distinct and clinically relevant applications of cancer imaging-based biomarkers. We found that it facilitated better and more efficient learning of imaging biomarkers and yielded task-specific models that significantly outperformed conventional supervised and other state-of-the-art pretrained implementations on downstream tasks, especially when training dataset sizes were very limited. Furthermore, the foundation model was more stable to input variations and showed strong associations with underlying biology. Our results demonstrate the tremendous potential of foundation models in discovering new imaging biomarkers that may extend to other clinical use cases and can accelerate the widespread translation of imaging biomarkers into clinical settings.

2.
Nat Commun ; 15(1): 2088, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453924

RESUMEN

Metastatic prostate cancer (PCa) poses a significant therapeutic challenge with high mortality rates. Utilizing CRISPR-Cas9 in vivo, we target five potential tumor suppressor genes (Pten, Trp53, Rb1, Stk11, and RnaseL) in the mouse prostate, reaching humane endpoint after eight weeks without metastasis. By further depleting three epigenetic factors (Kmt2c, Kmt2d, and Zbtb16), lung metastases are present in all mice. While whole genome sequencing reveals few mutations in coding sequence, RNA sequencing shows significant dysregulation, especially in a conserved genomic region at chr5qE1 regulated by KMT2C. Depleting Odam and Cabs1 in this region prevents metastasis. Notably, the gene expression signatures, resulting from our study, predict progression-free and overall survival and distinguish primary and metastatic human prostate cancer. This study emphasizes positive genetic interactions between classical tumor suppressor genes and epigenetic modulators in metastatic PCa progression, offering insights into potential treatments.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Sistemas CRISPR-Cas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transcriptoma , Familia de Multigenes
3.
Nat Protoc ; 19(1): 159-183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38017136

RESUMEN

Intratumor heterogeneity provides the fuel for the evolution and selection of subclonal tumor cell populations. However, accurate inference of tumor subclonal architecture and reconstruction of tumor evolutionary histories from bulk DNA sequencing data remains challenging. Frequently, sequencing and alignment artifacts are not fully filtered out from cancer somatic mutations, and errors in the identification of copy number alterations or complex evolutionary events (e.g., mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this Protocol, we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic relationships from multisample tumor sequencing, accounting for both copy number alterations and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumor phylogeny from multisample tumors with high-depth whole-exome sequencing from the TRACERx421 dataset, as well as matched primary-metastatic cases. CONIPHER outperforms similar methods on simulated datasets, and in particular scales to a large number of tumor samples and clones, while completing in under 1.5 h on average. CONIPHER enables automated phylogenetic analysis that can be effectively applied to large sequencing datasets generated with different technologies. CONIPHER can be run with a basic knowledge of bioinformatics and R and bash scripting languages.


Asunto(s)
Algoritmos , Neoplasias , Humanos , Filogenia , Neoplasias/genética , Neoplasias/patología , Biología Computacional/métodos , Análisis de Secuencia de ADN , Mutación
4.
J Immunother Cancer ; 11(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37914385

RESUMEN

BACKGROUND: Checkpoint inhibitor (CPI) immunotherapies have provided durable clinical responses across a range of solid tumor types for some patients with cancer. Nonetheless, response rates to CPI vary greatly between cancer types. Resolving intratumor transcriptomic changes induced by CPI may improve our understanding of the mechanisms of sensitivity and resistance. METHODS: We assembled a cohort of longitudinal pre-therapy and on-therapy samples from 174 patients treated with CPI across six cancer types by leveraging transcriptomic sequencing data from five studies. RESULTS: Meta-analyses of published RNA markers revealed an on-therapy pattern of immune reinvigoration in patients with breast cancer, which was not discernible pre-therapy, providing biological insight into the impact of CPI on the breast cancer immune microenvironment. We identified 98 breast cancer-specific correlates of CPI response, including 13 genes which are known IO targets, such as toll-like receptors TLR1, TLR4, and TLR8, that could hold potential as combination targets for patients with breast cancer receiving CPI treatment. Furthermore, we demonstrate that a subset of response genes identified in breast cancer are already highly expressed pre-therapy in melanoma, and additionally we establish divergent RNA dynamics between breast cancer and melanoma following CPI treatment, which may suggest distinct immune microenvironments between the two cancer types. CONCLUSIONS: Overall, delineating longitudinal RNA dynamics following CPI therapy sheds light on the mechanisms underlying diverging response trajectories, and identifies putative targets for combination therapy.


Asunto(s)
Neoplasias de la Mama , Melanoma , Humanos , Femenino , Melanoma/tratamiento farmacológico , Inmunoterapia/efectos adversos , Terapia Combinada , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Microambiente Tumoral/genética
5.
medRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745558

RESUMEN

Because humans age at different rates, a person's physical appearance may yield insights into their biological age and physiological health more reliably than their chronological age. In medicine, however, appearance is incorporated into medical judgments in a subjective and non-standardized fashion. In this study, we developed and validated FaceAge, a deep learning system to estimate biological age from easily obtainable and low-cost face photographs. FaceAge was trained on data from 58,851 healthy individuals, and clinical utility was evaluated on data from 6,196 patients with cancer diagnoses from two institutions in the United States and The Netherlands. To assess the prognostic relevance of FaceAge estimation, we performed Kaplan Meier survival analysis. To test a relevant clinical application of FaceAge, we assessed the performance of FaceAge in end-of-life patients with metastatic cancer who received palliative treatment by incorporating FaceAge into clinical prediction models. We found that, on average, cancer patients look older than their chronological age, and looking older is correlated with worse overall survival. FaceAge demonstrated significant independent prognostic performance in a range of cancer types and stages. We found that FaceAge can improve physicians' survival predictions in incurable patients receiving palliative treatments, highlighting the clinical utility of the algorithm to support end-of-life decision-making. FaceAge was also significantly associated with molecular mechanisms of senescence through gene analysis, while age was not. These findings may extend to diseases beyond cancer, motivating using deep learning algorithms to translate a patient's visual appearance into objective, quantitative, and clinically useful measures.

6.
Elife ; 122023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669321

RESUMEN

The application of next-generation sequencing (NGS) has transformed cancer research. As costs have decreased, NGS has increasingly been applied to generate multiple layers of molecular data from the same samples, covering genomics, transcriptomics, and methylomics. Integrating these types of multi-omics data in a combined analysis is now becoming a common issue with no obvious solution, often handled on an ad hoc basis, with multi-omics data arriving in a tabular format and analyzed using computationally intensive statistical methods. These methods particularly ignore the spatial orientation of the genome and often apply stringent p-value corrections that likely result in the loss of true positive associations. Here, we present GENIUS (GEnome traNsformatIon and spatial representation of mUltiomicS data), a framework for integrating multi-omics data using deep learning models developed for advanced image analysis. The GENIUS framework is able to transform multi-omics data into images with genes displayed as spatially connected pixels and successfully extract relevant information with respect to the desired output. We demonstrate the utility of GENIUS by applying the framework to multi-omics datasets from the Cancer Genome Atlas. Our results are focused on predicting the development of metastatic cancer from primary tumors, and demonstrate how through model inference, we are able to extract the genes which are driving the model prediction and are likely associated with metastatic disease progression. We anticipate our framework to be a starting point and strong proof of concept for multi-omics data transformation and analysis without the need for statistical correction.


Asunto(s)
Multiómica , Neoplasias , Perfilación de la Expresión Génica , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Procesamiento de Imagen Asistido por Computador
7.
medRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732237

RESUMEN

Foundation models represent a recent paradigm shift in deep learning, where a single large-scale model trained on vast amounts of data can serve as the foundation for various downstream tasks. Foundation models are generally trained using self-supervised learning and excel in reducing the demand for training samples in downstream applications. This is especially important in medicine, where large labeled datasets are often scarce. Here, we developed a foundation model for imaging biomarker discovery by training a convolutional encoder through self-supervised learning using a comprehensive dataset of 11,467 radiographic lesions. The foundation model was evaluated in distinct and clinically relevant applications of imaging-based biomarkers. We found that they facilitated better and more efficient learning of imaging biomarkers and yielded task-specific models that significantly outperformed their conventional supervised counterparts on downstream tasks. The performance gain was most prominent when training dataset sizes were very limited. Furthermore, foundation models were more stable to input and inter-reader variations and showed stronger associations with underlying biology. Our results demonstrate the tremendous potential of foundation models in discovering novel imaging biomarkers that may extend to other clinical use cases and can accelerate the widespread translation of imaging biomarkers into clinical settings.

8.
Melanoma Res ; 33(5): 364-374, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294123

RESUMEN

Immunotherapy has revolutionized treatment of patients diagnosed with metastatic melanoma, where nearly half of patients receive clinical benefit. However, immunotherapy is also associated with immune-related adverse events, which may be severe and persistent. It is therefore important to identify patients that do not benefit from therapy early. Currently, regularly scheduled CT scans are used to investigate size changes in target lesions to evaluate progression and therapy response. This study aims to explore if panel-based analysis of circulating tumor DNA (ctDNA) taken at 3-week intervals may provide a window into the growing cancer, can be used to identify nonresponding patients early, and determine genomic alterations associated with acquired resistance to checkpoint immunotherapy without analysis of tumor tissue biopsies. We designed a gene panel for ctDNA analysis and sequenced 4-6 serial plasma samples from 24 patients with unresectable stage III or IV melanoma and treated with first-line checkpoint inhibitors enrolled at the Department of Oncology at Aarhus University Hospital, Denmark. TERT was the most mutated gene found in ctDNA and associated with a poor prognosis. We detected more ctDNA in patients with high metastatic load, which indicates that more aggressive tumors release more ctDNA into the bloodstream. Although we did not find evidence of specific mutations associated with acquired resistance, we did demonstrate in this limited cohort of 24 patients that untargeted, panel-based ctDNA analysis has the potential to be used as a minimally invasive tool in clinical practice to identify patients where the benefits of immunotherapy outweigh the drawbacks.


Asunto(s)
ADN Tumoral Circulante , Melanoma , Neoplasias Primarias Secundarias , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Inmunoterapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/uso terapéutico , Mutación
9.
Nat Med ; 29(4): 833-845, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045996

RESUMEN

Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and 'tumor spread through air spaces' were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Recurrencia Local de Neoplasia/patología , Adenocarcinoma del Pulmón/genética , Progresión de la Enfermedad , ADN Helicasas , Proteínas Nucleares , Factores de Transcripción
10.
Nat Med ; 29(4): 846-858, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045997

RESUMEN

Cancer-associated cachexia (CAC) is a major contributor to morbidity and mortality in individuals with non-small cell lung cancer. Key features of CAC include alterations in body composition and body weight. Here, we explore the association between body composition and body weight with survival and delineate potential biological processes and mediators that contribute to the development of CAC. Computed tomography-based body composition analysis of 651 individuals in the TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study suggested that individuals in the bottom 20th percentile of the distribution of skeletal muscle or adipose tissue area at the time of lung cancer diagnosis, had significantly shorter lung cancer-specific survival and overall survival. This finding was validated in 420 individuals in the independent Boston Lung Cancer Study. Individuals classified as having developed CAC according to one or more features at relapse encompassing loss of adipose or muscle tissue, or body mass index-adjusted weight loss were found to have distinct tumor genomic and transcriptomic profiles compared with individuals who did not develop such features. Primary non-small cell lung cancers from individuals who developed CAC were characterized by enrichment of inflammatory signaling and epithelial-mesenchymal transitional pathways, and differentially expressed genes upregulated in these tumors included cancer-testis antigen MAGEA6 and matrix metalloproteinases, such as ADAMTS3. In an exploratory proteomic analysis of circulating putative mediators of cachexia performed in a subset of 110 individuals from TRACERx, a significant association between circulating GDF15 and loss of body weight, skeletal muscle and adipose tissue was identified at relapse, supporting the potential therapeutic relevance of targeting GDF15 in the management of CAC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Caquexia/complicaciones , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteómica , Recurrencia Local de Neoplasia/patología , Composición Corporal , Peso Corporal , Músculo Esquelético/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias
11.
Nature ; 616(7957): 543-552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046093

RESUMEN

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Asunto(s)
Evolución Molecular , Genoma Humano , Neoplasias Pulmonares , Metástasis de la Neoplasia , Transcriptoma , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Genómica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Metástasis de la Neoplasia/genética , Transcriptoma/genética , Alelos , Aprendizaje Automático , Genoma Humano/genética
12.
Nature ; 616(7957): 563-573, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046094

RESUMEN

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Asunto(s)
Retrovirus Endógenos , Inmunoterapia , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/virología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/virología , Modelos Animales de Enfermedad , Retrovirus Endógenos/inmunología , Inmunoterapia/métodos , Pulmón/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virología , Microambiente Tumoral , Linfocitos B/inmunología , Estudios de Cohortes , Anticuerpos/inmunología , Anticuerpos/uso terapéutico
14.
PLoS One ; 18(2): e0281375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745657

RESUMEN

Immunotherapy has revolutionised cancer treatment. However, not all cancer patients benefit, and current stratification strategies based primarily on PD1 status and mutation burden are far from perfect. We hypothesised that high activation of an innate response relative to the adaptive response may prevent proper tumour neoantigen identification and decrease the specific anticancer response, both in the presence and absence of immunotherapy. To investigate this, we obtained transcriptomic data from three large publicly available cancer datasets, the Cancer Genome Atlas (TCGA), the Hartwig Medical Foundation (HMF), and a recently published cohort of metastatic bladder cancer patients treated with immunotherapy. To analyse immune infiltration into bulk tumours, we developed an RNAseq-based model based on previously published definitions to estimate the overall level of infiltrating innate and adaptive immune cells from bulk tumour RNAseq data. From these, the adaptive-to-innate immune ratio (A/I ratio) was defined. A meta-analysis of 32 cancer types from TCGA overall showed improved overall survival in patients with an A/I ratio above median (Hazard ratio (HR) females 0.73, HR males 0.86, P < 0.05). Of particular interest, we found that the association was different for males and females for eight cancer types, demonstrating a gender bias in the relative balance of the infiltration of innate and adaptive immune cells. For patients with metastatic disease, we found that responders to immunotherapy had a significantly higher A/I ratio than non-responders in HMF (P = 0.036) and a significantly higher ratio in complete responders in a separate metastatic bladder cancer dataset (P = 0.022). Overall, the adaptive-to-innate immune ratio seems to define separate states of immune activation, likely linked to fundamental immunological reactions to cancer. This ratio was associated with improved prognosis and improved response to immunotherapy, demonstrating potential relevance to patient stratification. Furthermore, by demonstrating a significant difference between males and females that associates with response, we highlight an important gender bias which likely has direct clinical relevance.


Asunto(s)
Sexismo , Neoplasias de la Vejiga Urinaria , Humanos , Masculino , Femenino , Pronóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Inmunidad Innata , Inmunoterapia
15.
Cancers (Basel) ; 15(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831479

RESUMEN

OBJECTIVE: Circulating tumor DNA (ctDNA) is a candidate biomarker of cancer with practice-changing potential in the detection of both early and residual disease. Disease stage and tumor size affect the probability of ctDNA detection, whereas little is known about the influence of other tumor characteristics on ctDNA detection. This study investigates the impact of tumor cell whole-genome doubling (WGD) on the detection of ctDNA in plasma collected preoperatively from newly diagnosed colorectal cancer (CRC) patients. METHODS: WGD was estimated from copy numbers derived from whole-exome sequencing (WES) data of matched tumor and normal DNA from 833 Danish CRC patients. To explore if tumor WGD status impacts ctDNA detection, we applied tumor-informed ctDNA analysis to preoperative plasma samples from all patients. RESULTS: Patients with WGD+ tumors had 53% increased odds of being ctDNA positive (OR = 1.53, 95%CI: 1.12-2.09). After stratification for UICC stage, the association persisted for Stage I (OR = 2.44, 95%CI: 1.22-5.03) and Stage II (OR = 1.76, 95%CI: 1.11-2.81) but not for Stage III (OR = 0.83, 95%CI: 0.44-1.53) patients. CONCLUSION: The presence of WGD significantly increases the probability of detecting ctDNA, particularly for early-stage disease. In patients with more advanced disease, the benefit of WGD on ctDNA detection is less pronounced, consistent with increased DNA shedding from these tumors, making ctDNA detection less dependent on the amount of ctDNA released per tumor cell.

16.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497297

RESUMEN

Cancer metastasis is the lethal developmental step in cancer, responsible for the majority of cancer deaths. To metastasise, cancer cells must acquire the ability to disseminate systemically and to escape an activated immune response. Here, we endeavoured to investigate if metastatic dissemination reflects acquisition of genomic traits that are selected for. We acquired mutation and copy number data from 8332 tumours representing 19 cancer types acquired from The Cancer Genome Atlas and the Hartwig Medical Foundation. A total of 827,344 non-synonymous mutations across 8332 tumour samples representing 19 cancer types were timed as early or late relative to copy number alterations, and potential driver events were annotated. We found that metastatic cancers had a significantly higher proportion of clonal mutations and a general enrichment of early mutations in p53 and RTK/KRAS pathways. However, while individual pathways demonstrated a clear time-separated preference for specific events, the relative timing did not vary between primary and metastatic cancers. These results indicate that the selective pressure that drives cancer development does not change dramatically between primary and metastatic cancer on a genomic level, and is mainly focused on alterations that increase proliferation.

17.
Eur Urol ; 82(6): 646-656, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36210217

RESUMEN

BACKGROUND: The functional status of immune cells in the tumor microenvironment and tumor characteristics may explain bacillus Calmette-Guérin (BCG) failure in high-risk non-muscle-invasive bladder cancer (NMIBC). OBJECTIVE: To characterize molecular correlates of post-BCG high-grade (HG) recurrence using multiomics analysis. DESIGN, SETTING, AND PARTICIPANTS: Patients with BCG-treated NMIBC (n = 156) were included in the study. Metachronous tumors were analyzed using RNA sequencing (n = 170) and whole-exome sequencing (n = 195). Urine samples were analyzed for immuno-oncology-related proteins (n = 190) and tumor-derived DNA (tdDNA; n = 187). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoint was post-BCG HG recurrence. Cox regression and Wilcoxon rank-sum, t, and Fisher's exact tests were used for analyses. RESULTS AND LIMITATIONS: BCG induced activation of the immune system regardless of clinical response; however, immunoinhibitory proteins were observed in the urine of patients with post-BCG HG recurrence (CD70, PD1, CD5). Post-BCG HG recurrence was associated with post-BCG T-cell exhaustion (p = 0.002). Pre-BCG tumors from patients with post-BCG T-cell exhaustion had high expression of genes related to cell division and immune function. A high predicted post-BCG exhaustion score for pre-BCG tumors was associated with worse post-BCG HG recurrence-free survival (HGRFS; p = 0.002). This was validated in independent cohorts. Pre-BCG class 2a and 2b tumors (UROMOL2021 scheme) were associated with worse post-BCG HGRFS (p = 0.015). Post-BCG exhaustion was observed in patients with high pre-BCG neoantigen load (p = 0.017) and MUC4 mutations (p = 0.002). Finally, the absence of post-BCG tdDNA clearance identified patients at high risk of recurrence (p = 0.018). The retrospective design and partial overlap for analyses are study limitations. CONCLUSIONS: Post-BCG HG recurrence may be caused by T-cell exhaustion. Tumor subtype and pre-BCG tumor characteristics may identify patients at high risk of post-BCG HG recurrence. Urinary measurements have potential for real-time assessment of treatment response. PATIENT SUMMARY: A dysfunctional immune response to bacillus Calmette-Guérin (BCG) therapy may explain high-grade recurrences of bladder cancer.


Asunto(s)
Vacuna BCG , Neoplasias de la Vejiga Urinaria , Humanos , Adyuvantes Inmunológicos/uso terapéutico , Administración Intravesical , Vacuna BCG/efectos adversos , ADN de Neoplasias , Invasividad Neoplásica , Recurrencia Local de Neoplasia , Estudios Retrospectivos , Linfocitos T , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
18.
Cancers (Basel) ; 14(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35884403

RESUMEN

BACKGROUND: Checkpoint inhibitors have revolutionized the treatment of metastatic melanoma, yielding long-term survival in a considerable proportion of the patients. Yet, 40-60% of patients do not achieve a long-term benefit from such therapy, emphasizing the urgent need to identify biomarkers that can predict response to immunotherapy and guide patients for the best possible treatment. Here, we exploited an unsupervised machine learning approach to identify potential inflammatory cytokine signatures from liquid biopsies, which could predict response to immunotherapy in melanoma. METHODS: We studied a cohort of 77 patients diagnosed with unresectable advanced-stage melanoma undergoing treatment with first-line nivolumab plus ipilimumab or pembrolizumab. Baseline and on-treatment plasma samples were tested for levels of PD-1, PD-L1, IFNγ, IFNß, CCL20, CXCL5, CXCL10, IL6, IL8, IL10, MCP1, and TNFα and analyzed by Uniform Manifold Approximation and Projection (UMAP) dimension reduction method and k-means clustering analysis. RESULTS: Interestingly, using UMAP analysis, we found that treatment-induced cytokine changes measured as a ratio between baseline and on-treatment samples correlated significantly to progression-free survival (PFS). For patients treated with nivolumab plus ipilimumab we identified a group of patients with superior PFS that were characterized by significantly higher baseline-to-on-treatment increments of PD-1, PD-L1, IFNγ, IL10, CXCL10, and TNFα compared to patients with worse PFS. Particularly, a high PD-1 increment was a strong individual predictor for superior PFS (HR = 0.13; 95% CI 0.034-0.49; p = 0.0026). In contrast, decreasing levels of IFNγ and IL6 and increasing levels of CXCL5 were associated with superior PFS in the pembrolizumab group, although none of the cytokines were individually predictors for PFS. CONCLUSIONS: In short, our study demonstrates that a high increment of PD-1 is associated with superior PFS in advanced-stage melanoma patients treated with nivolumab plus ipilimumab. In contrast, decreasing levels of IFNγ and IL6, and increasing levels of CXCL5 are associated with response to pembrolizumab. These results suggest that using serial samples to monitor changes in cytokine levels early during treatment is informative for treatment response.

19.
Cancer Res ; 82(16): 2918-2927, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35731928

RESUMEN

Metastasis is the main cause of cancer death, yet the evolutionary processes behind it remain largely unknown. Here, through analysis of large panel-based genomic datasets from the AACR Genomics Evidence Neoplasia Information Exchange project, including 40,979 primary and metastatic tumors across 25 distinct cancer types, we explore how the evolutionary pressure of cancer metastasis shapes the selection of genomic drivers of cancer. The most commonly affected genes were TP53, MYC, and CDKN2A, with no specific pattern associated with metastatic disease. This suggests that, on a driver mutation level, the selective pressure operating in primary and metastatic tumors is similar. The most highly enriched individual driver mutations in metastatic tumors were mutations known to drive resistance to hormone therapies in breast and prostate cancer (ESR1 and AR), anti-EGFR therapy in non-small cell lung cancer (EGFR T790M), and imatinib in gastrointestinal cancer (KIT V654A). Specific mutational signatures were also associated with treatment in three cancer types, supporting clonal selection following anticancer therapy. Overall, this implies that initial acquisition of driver mutations is predominantly shaped by the tissue of origin, where specific mutations define the developing primary tumor and drive growth, immune escape, and tolerance to chromosomal instability. However, acquisition of driver mutations that contribute to metastatic disease is less specific, with the main genomic drivers of metastatic cancer evolution associating with resistance to therapy. SIGNIFICANCE: This study leverages large datasets to investigate the evolutionary landscape of established cancer genes to shed new light upon the mystery of cancer dissemination and expand the understanding of metastatic cancer biology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/patología , Masculino , Mutación , Inhibidores de Proteínas Quinasas
20.
Cancer Res Commun ; 2(8): 762-771, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36923311

RESUMEN

The cGAS-STING pathway serves a critical role in anticancer therapy. Particularly, response to immunotherapy is likely driven by both active cGAS-STING signaling that attracts immune cells, and by the presence of cancer neoantigens that presents as targets for cytotoxic T cells. Chromosomal instability (CIN) is a hallmark of cancer, but also leads to an accumulation of cytosolic DNA that in turn results in increased cGAS-STING signaling. To avoid triggering the cGAS-STING pathway, it is commonly disrupted by cancer cells, either through mutations in the pathway or through transcriptional silencing. Given its effect on the immune system, determining the cGAS-STING activation status prior to treatment initiation is likely of clinical relevance. Here, we used combined expression data from 2,307 tumors from five cancer types from The Cancer Genome Atlas to define a novel cGAS-STING activity score based on eight genes with a known role in the pathway. Using unsupervised clustering, four distinct categories of cGAS-STING activation were identified. In multivariate models, the cGAS-STING active tumors show improved prognosis. Importantly, in an independent bladder cancer immunotherapy-treated cohort, patients with low cGAS-STING expression showed limited response to treatment, while patients with high expression showed improved response and prognosis, particularly among patients with high CIN and more neoantigens. In a multivariate model, a significant interaction was observed between CIN, neoantigens, and cGAS-STING activation. Together, this suggests a potential role of cGAS-STING activity as a predictive biomarker for the application of immunotherapy. Significance: The cGAS-STING pathway is induced by CIN, triggers inflammation and is often deficient in cancer. We provide a tool to evaluate cGAS-STING activity and demonstrate clinical significance in immunotherapy response.


Asunto(s)
Inestabilidad Cromosómica , Inmunoterapia , Metástasis de la Neoplasia , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/terapia , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/terapia , Análisis por Conglomerados , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Pronóstico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...